

L'instrument chirurgical et ses ennemis

Mr Georges Gessiaume - Dr Christophe Lambert Unité de Stérilisation centralisée CH Chambéry, France

L'ennemi probable

L'ennemi secondaire

L'ennemi sournois

L'ennemi rebelle

La révolte de l'étagère

Le retour du Jedi

L'ennemi quotidien

L'ennemi en profondeur

L'eau

- Dilution
- Lavage et thermo-désinfection, rinçage
- Vapeur d'eau

Les détergents ou DD

- Solutions de prétraitement
- Détergents de lavage (manuel, automatisé, LD)
- Désinfectants

Les sources physiologiques

Les solutés, antiseptiques et médicaments

Les procédés de retraitement et de maintenance

instruments chirurgicaux : matériaux

- Aciers inoxydables
- Alliage de métaux non ferreux (laiton nickelé)
- Titane
- Aluminium
- Verres
- Colles et mastics
- Caoutchouc
- Plastiques

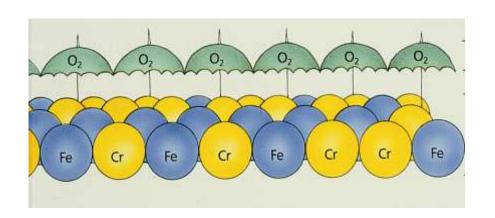
Principaux aciers: instruments chirurgicaux

- Austénitiques : 2% des instruments chirurgicaux
 - amagnétiques
 - résistant à la corrosion
 - faiblement résistant à la traction ou la déformation
 - usages : instruments statiques (valves, canules ...)
- Martensitiques: 98% des instruments chirurgicaux
 - magnétiques
 - Meilleur compromis corrosion / déformation
 - Usages : instruments dynamiques

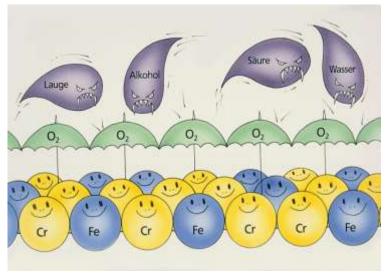
Les aciers inoxydables

- Acier inoxydable : alliages Fer-chrome
- Teneur minimale en chrome : 13%
- Eléments principaux :
 - Carbone : solidité et dureté
 - Silicium : élasticité et résistance à la traction
 - Phosphore : aptitude au forgeage
 - Soufre : améliore l'usinabilité
 - Chrome : résistance à la corrosion
 - Nickel : dureté de l'acier, sensibilité à la rouille

Le Titane



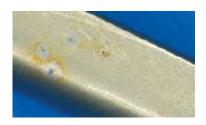
- Métal non ferreux, non magnétique
- Solide et flexible
- Résistant à la corrosion
 - Oxyde de titane / électrolyse
 - Film transparent, sans pigment ni colorant
 - Couleur dépend de l'épaisseur de la couche



Protection contre la corrosion

Acier inoxydable actif

Acier inoxydable passif


La corrosion

Usure d'une surface causée par une agression chimique

 Piqûre se transforme en cavité ou fissure jusqu'à rupture

- Facteurs d'accélération : T°, humidité
 - Zones cibles :
 - surfaces non lisses,
 - fermetures,
 - axes,
 - serrages

Résistance des instruments chirurgicaux

 ISO 13402 : Instruments chirurgicaux – Détermination de la résistance au passage à l'autoclave, à la corrosion et à l'exposition à la chaleur

Décrit les méthodes d'essai qui permettent de déterminer la résistance des instruments chirurgicaux :

- * autoclave : résistance à la corrosion
- * corrosion: essai eau bouillante
- * chaleur : essai sulfate de cuivre
- NF S 94-402: Compatibilité des Instruments chirurgicaux avec les détergents

4 Essai à l'eau bouillante pour la détermination de la résistance à la corrosion

L'essai à l'eau bouillante est destiné à la détermination de la résistance à la corrosion.

4.1 Réactif

L'eau utilisée pour effectuer l'essai doit être de qualité 3, conformément à l'ISO 3696:1987.

4.2 Appareillage

Bécher en verre ou en céramique, ou tout autre récipient approprié en acier inoxydable et résistant à la corrosion.

4.3 Préparation

Nettoyer l'instrument au savon et à l'eau chaude. Rincer soigneusement à l'eau (4.1) et essuyer.

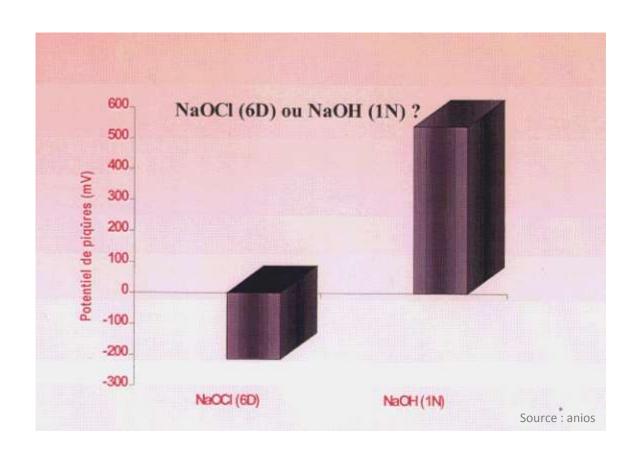
4.4 Mode opératoire

Immerger l'instrument pendant 30 min dans le bécher ou le récipient (4.2) contenant de l'eau bouillante (4.1). Ensuite, laisser refroidir l'instrument pendant 1 h dans l'eau utilisée pour l'essai.

Sortir l'instrument de l'eau et le laisser exposé à l'air pendant 2 h. Le frotter vigoureusement avec un chiffon sec.

4.5 Évaluation

Examiner l'instrument en vue de déceler d'éventuels défauts d'aspect.


Sources de la corrosion

- Eau
- Chlorures :
 - Eau insuffisamment déminéralisée
 - Résidus de sels lors de la fabrication eau adoucie
 - Liquides biologiques (sg, salive, sueur)
 - Sérum physiologique
 - Sol. et gels de prétraitement (NH4Cl ...)
 - Eau de javel
 - Halogénés
- Produits et durée du prétraitement
- Marquage instrumentation

Soude ou javel?

Dommages causé par « Eau de Javel »

1 minute

3 minutes

10 minutes

20 minutes

Prétraitement : spray et gel

- Comparaison de 4 sprays enzymatiques / salissure de type B
- Aluminium anodisé, inox standard, inox des instruments chirurgicaux
- Temps de contact : 6h00, 24h00, 72h00
- Comparaison du pH et des concentrations en chlorures
- pH neutre (6,9-7,4) ou légèrement alcalin (8,5-8,9)
- Chlorures: 30,70,80 ou 430 mg/l

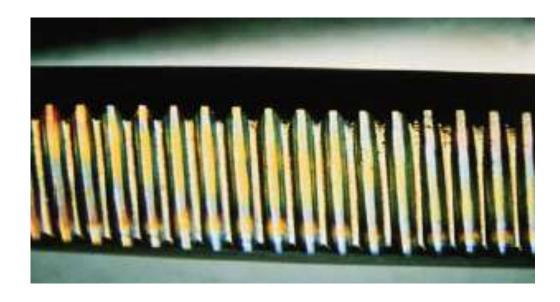
Résultats:

Aluminium : corrosion ou altération état de surface

Instruments : traces de corrosion à partir de 6h00 pour le plus concentré en chlorure + synergie avec liquides biologiques Résistance supérieure des surfaces brossés

Source : Zentral stérilisation

Détergents alcalins et aluminium



Température

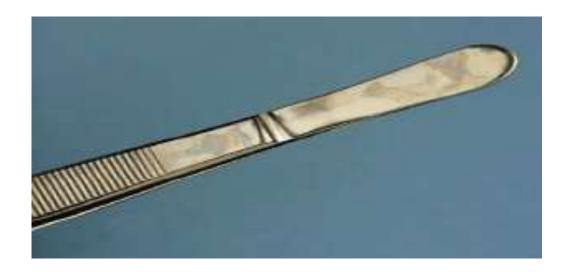
Coloration Arc en ciel

Décolorations

Anodisation

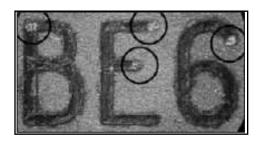
Décoloration

Silicates



Tâches léopard

Eau osmosée



Marquage des instruments

Maintenance

Source cochin

Absence de lubrification

... le radiologue est-il un ami?

Merci pour votre attention

christophe.lambert@ch-chambery.fr