

## L'ECOSTERILISATION: un challenge pour tous

Christophe LAMBERT
Centre Hospitalier de Chambéry
7èmes JSSH
7-8 juin 2011 - Regensdorf

# Pourquoi une éco stérilisation?

- Grenelle de l'environnement (oct. 2009)
  - établissements producteurs de déchets
  - établissements émetteurs de gaz à effet de serre
  - empreinte environnementale des établissement

Impact environnemental de l'USC?

### Le cycle vertueux de l'USC



#### **Equipements:**

Énergivores

**Grand consommateur H2O** 

roducteurs de chaleur non récupérée

Climatisation 24/24h



#### Déchets non triés:

Emballages
Consommables, essuies mains
Bidons détergents



Indicateurs physico-chimiques

Clips

Écouvillons UU



#### **Effluents:**

Détergents (laveurs)

Décontaminants (sols, surfaces, préD ...)

Prionicides (NaOH, chlorés ...)



### Quels risques en stérilisation?

### Risques directs:

- infectieux (AES)
- toxicité des produits chimiques (allergies, atteintes respiratoires ....)
- troubles auditifs
- troubles musculo-squelettiques (TMS)

### Risques indirects :

- réchauffement climatique (gaz à effet de serre)
- épuisement des ressources fossiles
- consommation des ressources
- pollution environnementale



## Maîtrise des risques en stérilisation

Politique de management environnemental

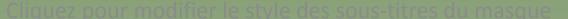
Maîtrise des consommations en eau

Maîtrise énergétique

Gestion des déchets

Politique d'achat et d'approvisionnement




Peut-on sauver la planète sans rendre dingue sa famille ? **COLIN BEAVAN** 



### L'USC de Chambéry

#### Unité de Stérilisation Centralisée du CH Chambéry

- · 660 m2
- · 4 LD, 4 autoclaves, 1 Cabine
- 16 ETP
- · 3 200 cycles /an
- 550 containers + 540 paniers emballés



#### **Blocs Opératoires**

- 9 salles (central) + 3 salles (ambulatoire)
- 11 000 interventions /an
- toutes spécialités excepté neurochirurgie et cardiologie



Nombre de cycles d'autoclaves : 3200

Nombre de cycles de laveurs : 7 200

Nombre de cycles cabine : 2500

Nombre d'unités produites :

• Containers: 21 000

• Paniers emballés : 16 000

• Sachets: 83 000



## Management environnemental

Cliquez pour modifier le style des sous-titres du masque



### Performance du management

Inscription au projet d'établissement ou au projet de pôle

Identification de responsables

Cliquez pour modifier le style des sous-titres du masque

 Plans stratégiques : certification ISO 14001, ISO 14040, ISO 26000 ... démarche HQE

Formalisation d'indicateurs



## Analyse du cycle de vie



http://www.solidworks.fr/sustainability/images/content/design/lca\_chart\_low\_final\_FRA.gif



## Maîtrise de l'eau

Cliquez pour modifier le style des sous-titres du



### Consommations en eau à l'USC

Laveur désinfecteur : 45 à 140 litres / cycle

Cabine de lavage : 80 à 360 litres /cycle

Autoclaves: 250 à 400 litres / cycle

• Générateur : < 10%

• Pompe à vide : 90%

Unité de stérilisation centralisée : 8 000 litres /jour

## Comment maîtriser l'eau en stérilisation ?

LD : intérêt de la thermodésinfection ?

La stérilisation : lumières et ombres. D. Goullet. Zentral stérilisation ; 2 : 2009.

#### Cabine:

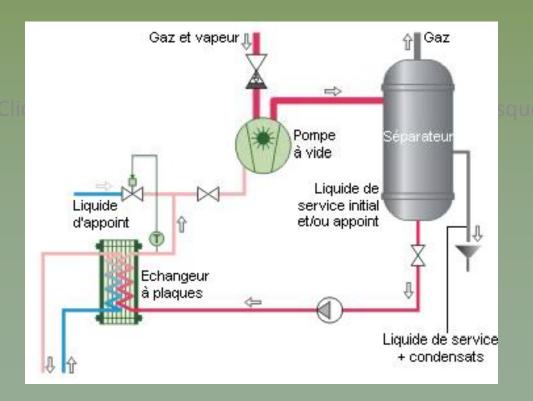
- recyclage des eaux de lavage (tanker)?
- « l'utilisation d'un procédé automatique de nettoyage n'est acceptable que si les produits de lavage ne sont pas recyclés » Circulaire n°138 du 14 mars 2001
  - recyclage des eaux de rinçage ou de
    - thermodésinfection?
  - pourquoi nettoyer les armoires en cabin

## Comment maîtriser l'eau en stérilisation ?

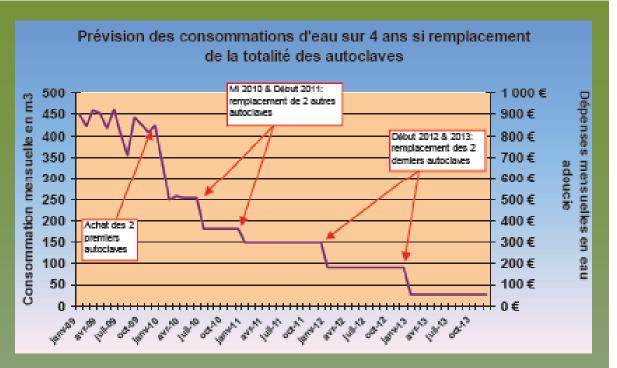
Consommations des pompes à vide :

- pompe à effet Venturi
- pompe à anneaux liquide
- pompe à palette d'huile

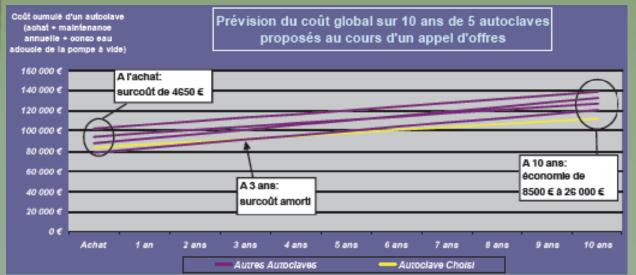
300 litres
250 à 10\* litres
0 litre


Recycler la totalité de l'eau adoucie utilisée par la pompe à vide

### utoclaves : économiseurs d'eau


Systèmes économiseurs d'eau :

raccordé sur le réseau générateur eau glacée


réduction consommation eau de 90%







La stérilisation à l'heure du DD – Berthomieu A.,CHU de Rouen. 32èmes JNES





## Maîtrise énergétique

## Consommations énergétiques à l'USC

### Equipements

• Laveurs : 4 à 10 KW

• Autoclaves: 15 à 25 KW

• Cabine: 40 à 120 KW

Centrale de traitement d'air

· Autres: lumières, PC ...

## Bilan énergétique d'un cycle d'autoclave

| AL A |             | Énergies en entrée                                    | kWh/cycles | %  |
|------|-------------|-------------------------------------------------------|------------|----|
|      | 400         | Générateur                                            | 10         | 68 |
| 1    |             | Pompe à vide                                          | 4,6        | 32 |
|      |             | Énergies en sortie                                    | kWh/cycles |    |
|      |             | Mélange condensats et liquide de service              | 9,4        | 64 |
|      |             | Condensats de la double enveloppe                     | 0,4        | 4  |
|      |             | Pertes par les parois                                 | 2,5        | 17 |
| K    | Chaleur     | résiduelle de la charge et de la cuve vers l'ambiance | 2,2        | 15 |
| k    | Mars VAN TA |                                                       |            |    |

Entrées = Sorties

D'après: http://www.energieplus-lesite.be/energieplus/page 11318.htm

## Bilan énergétique global des autoclaves

Consommations annuelle: 81 700 KWh

Périodes de consommation :

en service: 58%

en veille: 42%



**Autoclaves** 

4 à 5 % facture énergétique globale



### Quelles actions à l'USC?

Outils d'évaluation des consommations



Achat d'équipements moins énergivores

Cliquez pour modifier le style des sous-titres du masque

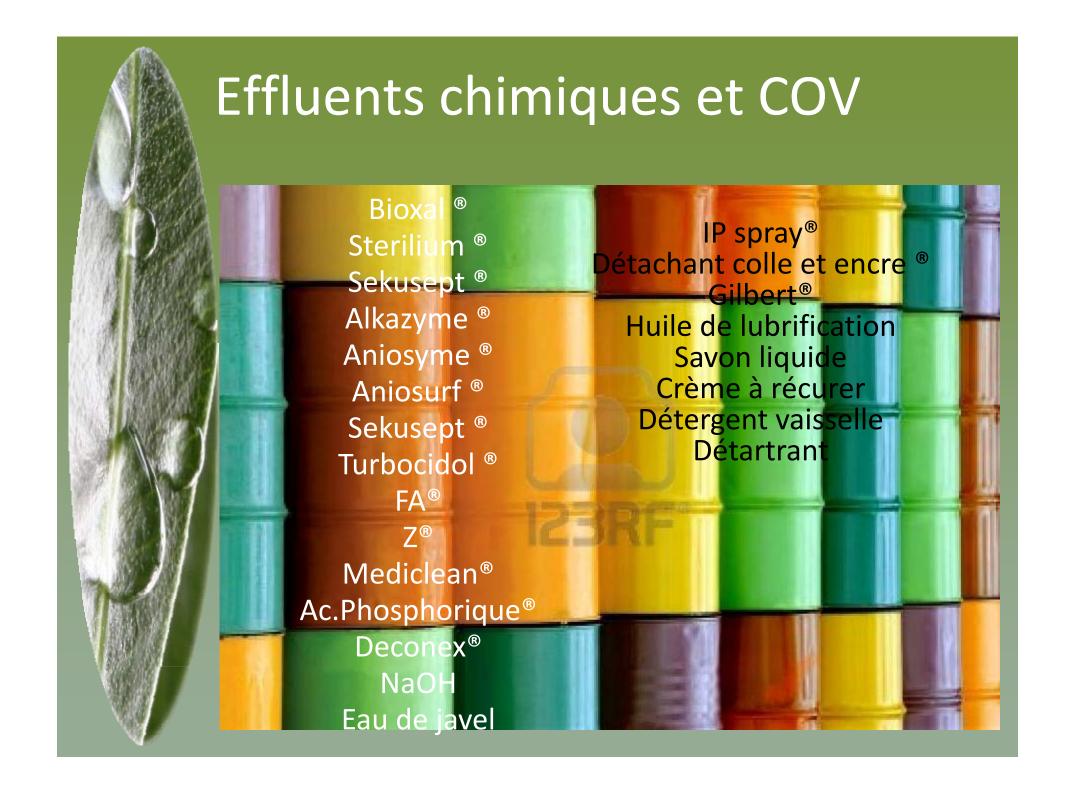
LD : récupération des calories pour le séchage

Rationaliser et réduire les temps de veille des équipements



### Quelles actions à l'USC?

Calorifugeage des équipements


Privilégier les détecteurs de présence dans les lieux de passage (sas, toilettes, couloirs

...)





## Gestion des produits le des sous-titres du marchimiques



### Maîtrise des produits chimiques

Définir leur fonction

 Etudier leur profil toxicologique et les conséquences potentielles

Principe de substitution « REACH »

Modalités de stockage

Gestion des déchets

## Caractérisation des produits chimiques

### Programme KLARA:

- · Protection du personnel et de l'environnement
- Hôpital Karolinska, suède
- Inventaire des produits chimiques et localisation
- Analyse des propriétés toxicologiques

Ex: suppression des dérivés chlorés/vapeur



Liste de produits moins écotoxiques



## KLARA: produits exclus

#### Phase-out substances

2-bromo-2-nitropropane-1,3-diol (bronopol)

Lead compounds

Diflubenzuron

d-Limonen

Hydrofluoric acid

Glutaraldehyde\*

Hydroquinone

Chlorhexidine

Copper sulphate (synonym: Copper (II)sulphate)

Mercury and its compounds

N,N-Diphenylamin

Permethrin

Piperonylbutoxid

Primicarb

Pyrethrin I

Pyrethrins I and II

Silver nitrate

112-Trichloro-1,2,2-trifluoroethane

Trichlosan (Irgasan)

Zinc dialkyldithiophospate

Zinc chloride

Zinc naphthenate

Zinc sulphate, heptahydrate

Phase-out of hazardous chemicals: Stockholm County Coucil

Italique : exclusions prioritaires et totales en 2011

### Evaluation des propriétés toxicologiques

 Toxicité = propriétés des matières premières (C°, pH, biodégradabilité)

Phrases de risques : série R

- Série R40; R45; R46; R49; R60; R61.R62; R63; R68: cancérogène, mutagène et toxique pour la reproduction
- Série R50 : dangereuse pour l'environnement

Déchets chimiques : H1 à H 14



### Quelles actions à l'USC?

Inventaire et caractérisation des produits

Justification de l'utilisation du produit

Choisir un produit écolabel : analyse des FDS

- sans phosphates,
- sans séquestrant type EDTA
- sans tensio-actifs

#### Prédésinfection mécanisée :

- Si vol. H2O < 20 litres
- Si détergent C° < 0,5 %





### Quelles actions à l'USC?

Substituer les détergents sols et surfaces par des appareils à vapeur

Tri des déchets chimiques

• Acides : pH < 5,5

• Bases : pH > 8,5

Sels

Solvants organiques



Disposer de collecteurs et bacs à rétention lors du stockage ou de l'entreposage

Centrale lessivielle ou recyclage des bidons en PP



### Les encres

Composition des encres physico-chimiques

Souffre et ses sels

Cliquez pour modifier le style des sous-titres du masqui

substitution du BD papier par BD électronique

- · Réutilisation 400 fois
- rechargeable





## Les emballages

Cliquez pour modifier le style des sous-titres du masque

### Impact des emballages

### Principaux composants:

- Polypropylène
- Hydrocellulose
- liants



### Bilan de l'USC de Chambery:

• Feuilles d'emballage 91x91 : 5 000 / an

Sachets: 150 000 / an

· Clips: 25 000 / an



### Quelles actions à l'USC?

Utiliser un simple emballage?

Non selon EN 11 607-1

Emballage usage unique versus container?

|                                                              | Non tissé | Containers |
|--------------------------------------------------------------|-----------|------------|
| Coût d'emballage* (euros)                                    | 1,40      | 0,62       |
| Coût consommables* (euros)                                   | 0,80      | 0,02       |
| Coût lavage (euros)                                          |           | 0, 72      |
| Coût amortissement (7ans) + maintenance (160 utilisation/an) |           | 0,64       |
| Total                                                        | 2,20      | 1,98       |

<sup>\*</sup>Emballage à UU vs réutilisable : étude comparative de coût au CHU de Rouen. S. Caquas - 32èmes JNES

Coût équivalent : le plus faible impact environnemental ?



### Réutiliser un emballage ?

### Evolution des propriétés physiques

| Propriétés Unités                         |        | Initial | l <sup>er</sup> cycle<br>stérilisat |                   | 2 <sup>ème</sup> cycl<br>stérilisa |                   | Valeur<br>attendue<br>selon la |
|-------------------------------------------|--------|---------|-------------------------------------|-------------------|------------------------------------|-------------------|--------------------------------|
|                                           |        | moyenne | moyenne                             |                   | moyenne                            |                   | norme EN<br>868-3              |
| Déchirement                               | mN     | 610     | 689                                 |                   | 689                                |                   | ]                              |
| Sens marche                               | mn     | 591,9   | 619,9                               |                   | 682,9                              | <b>\</b>          | <b>*</b>                       |
| Déchirement                               | l mN   | 705     | 813                                 |                   | 788                                |                   |                                |
| Sens travers                              |        | 685,2   | 740,1                               |                   | 753,9                              |                   | 1                              |
| Résistance à                              | Kpa    | 376     | 375                                 |                   | 363                                |                   |                                |
| l'éclatement                              | Кра    | 401,1   | 383,8                               |                   | 351,1                              |                   |                                |
| Résistance à<br>l'eau                     | Sec    | 32      | 31                                  | $\Leftrightarrow$ | 31                                 | $\Leftrightarrow$ | $\Leftrightarrow$              |
| Perméabilité à<br>l'air                   | ml/min | 848     | 1990                                | <b>/</b>          | 2145                               | <b>&gt;</b>       | <b>\</b>                       |
| Diamètre de                               |        | 22      | 22                                  |                   | 23                                 | <b>&gt;</b>       | 2                              |
| pore                                      | μm     | 24,7    | 25,9                                | 1                 | 27,6                               |                   |                                |
| Détermination<br>de l'absorption<br>d'eau | %      | 96.7    | 96                                  | •                 | 95.8                               |                   | $\Leftrightarrow$              |

D'après Marion Nouvel : étude des modifications des papiers utilisés pour le conditionnement de stérilisation des DM après passage dans un stérilisateur à vapeur



### Réutiliser un emballage ?

### Evolution de la barrière microbienne DIN 58 953/6 en condition humide

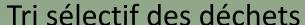
| Échantillons | Un cycle de<br>stérilisation |
|--------------|------------------------------|
| Test positif | +                            |
| N°1          | 3 UFC                        |
| N°2          | 0 UFC                        |
| N°3          | 0 UFC                        |
| N°4          | 0 UFC                        |
| N°5          | 0 UFC                        |

| Échantillons | 2 cycles de<br>stérilisation |
|--------------|------------------------------|
| Test positif | +                            |
| N°6          | 0 UFC                        |
| N°7          | 0 UFC                        |
| N°8          | 1 UFC                        |
| N°9          | 0 UFC                        |
| N°10         | 1 UFC                        |

D'après Marion Nouvel : étude des modifications des papiers utilisés pour le conditionnement de stérilisation des DM après passage dans un stérilisateur à vapeur



## D'autres stratégies « Less impact »




### Que faire à l'USC?

Suppression des essuies mains UU

Dématérialisation des procédures (AO, bons de commande ...)

Thermolock®: une alternative au clip



- Emballages, plombs, .... capsules nespresso
- 5 fillières minimum



### Conclusions

Rôle sociétal

Engagement dans la performance environnementale

Démarche progressive et constante

Réflexion selon Analyse du cycle de vie d'un produit

Achats publics durables

**Etendre la responsabilité au producteur** 



« Sois le changement que tu désires voir en ce monde »

Ghandi

### Merci pour votre attention

christophe.lambert@ch-chambery.fr

